
Proceedings on Privacy Enhancing Technologies ; 2017 (4):365–383

Jeremy Martin*, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont Brown, Chadwick

Riggins, Erik C. Rye, and Dane Brown

A Study of MAC Address Randomization in
Mobile Devices and When it Fails
Abstract: Media Access Control (MAC) address ran-

domization is a privacy technique whereby mobile de-

vices rotate through random hardware addresses in or-

der to prevent observers from singling out their traffic

or physical location from other nearby devices. Adop-

tion of this technology, however, has been sporadic and

varied across device manufacturers. In this paper, we

present the first wide-scale study of MAC address ran-

domization in the wild, including a detailed breakdown

of different randomization techniques by operating sys-

tem, manufacturer, and model of device.

We then identify multiple flaws in these implementa-

tions which can be exploited to defeat randomization

as performed by existing devices. First, we show that

devices commonly make improper use of randomization

by sending wireless frames with the true, global address

when they should be using a randomized address. We

move on to extend the passive identification techniques

of Vanhoef et al. to effectively defeat randomization in

∼96% of Android phones. Finally, we identify a previ-

ously unknown flaw in the way wireless chipsets handle

low-level control frames which applies to 100% of de-

vices we tested. This flaw permits an active attack that

can be used under certain circumstances to track any

existing wireless device.

Keywords: MAC address, randomization, privacy, track-

ing, 802.11, WiFi, hardware identifiers

DOI 10.1515/popets-2017-0054

Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

*Corresponding Author: Jeremy Martin: The MITRE

Corporation, work done partly while at the US Naval

Academy (USNA), E-mail: jbmartin@mitre.org

Travis Mayberry: USNA, E-mail: mayberry@usna.edu

Collin Donahue: USNA

Lucas Foppe: USNA

Lamont Brown: USNA

Chadwick Riggins: USNA

Erik C. Rye: USNA, E-mail: rye@usna.edu

Dane Brown: USNA, E-mail: dabrown@usna.edu

1 Introduction

Smartphones are one of the most impactful technolo-

gies of this century. The ability to access the Inter-

net anytime and anywhere has fundamentally changed

both work and personal life across the globe [27]. It is

gradually becoming clear, however, that in exchange for

this level of access to the Internet people may be giv-

ing up a substantial amount of privacy. In particular,

it has recently been made public that state sponsored

intelligence agencies, in countries such as Russia and

China [5, 7, 19], as well as private sector companies [22],

are actively attempting to track cellphone users.

Smartphones conventionally have two major modes

of communication, both of which can potentially be used

to track users. The first and most obvious is the cellu-

lar radio itself [10, 25]. However, an often overlooked

second avenue for tracking cellphones (and their corre-

sponding users) is the 802.11 (WiFi) radio that most

smart phones also use.

Every 802.11 radio on a mobile device possesses a

48-bit link-layer MAC address that is a globally unique

identifier for that specific device. The MAC address is

a crucial part of WiFi communication, being included

in every link-layer frame that is sent to or from the de-

vice. This unfortunately poses a glaring privacy problem

because any third party eavesdropping on nearby WiFi

traffic can uniquely identify nearby cellphones, and their

traffic, through their MAC addresses [12].

There is one particular type of WiFi packet, called a

probe request frame, that is an especially vulnerable part

of WiFi traffic with respect to surveillance. Since probe

requests continuously broadcast at a semi-constant rate

they make tracking trivial. Mobile devices are effectively

playing an endless game of digital “Marco Polo,” but

in addition to “Marco” they are also broadcasting out

their IDs (in the form of a MAC address) to anyone

that cares to listen. To address this problem, some mod-

ern mobile devices make use of temporary, randomized

MAC addresses that are distinct from their true global

address. When probe requests are sent out, they use

a randomized pseudonym MAC address that is changed

periodically. A listener should be unable to continuously

A Study of MAC Address Randomization in Mobile Devices and When it Fails 366

track the phone because the MAC changes in a way that

hopefully cannot be linked to the previous address.

In this work we evaluate the effectiveness of

various deployed MAC address randomization

schemes. We first investigate how exactly different mo-

bile Operating Systems (OSs) actually implement ran-

domization techniques, specifically looking at how the

addresses are generated and under what conditions the

devices actually use the randomized address instead of

the global one. Using real-world datasets we provide

the first evaluation of adoption rates for randomization

across a diverse manufacturer and model corpus.

After establishing the current state of randomiza-

tion for widely used phone models and OS versions, we

move on to show several weaknesses in these schemes

that allow us to track phones within and across multiple

collections of WiFi traffic. Our work builds on the fin-

gerprinting techniques of Vanhoef et al. [28] in addition

to new approaches for deanonymizing phones based on

weaknesses we discovered while analyzing wireless traf-

fic from many randomizing phones. This paper makes

the following novel contributions:

– We decompose a large 802.11 corpus, providing the

first granular breakdown of real-world MAC ad-

dress randomization. Specifically, we develop novel

techniques to identify and isolate randomization

and randomization schemes from large collections

of wireless traffic.

– We present the first manufacturer and device break-

down for MAC randomization, describing the par-

ticular technique each uses. Our results indicate

that adoption rates are surprising low, specifically

for Android devices.

– We review previous techniques for determining

global MAC addresses and find them to be insuf-

ficient. We provide additional context and improve-

ments to existing passive and active techniques, sub-

stantially increasing their effectiveness.

– We identify significant flaws in the majority of

Android randomization implementations which al-

low for trivial retrieval of the global MAC address.

– Discovery and implementation of a control frame

attack which exposes the global MAC address (and

thus allows tracking/surveillance) for all known de-

vices, regardless of OS, manufacturer, device type,

or randomization scheme. Furthermore, Android de-

vices can be susceptible to this attack even when the

user disables WiFi and/or enables Airplane Mode.

– We propose a set of best practices towards develop-

ing a secure MAC address randomization policy.

2 Background

2.1 MAC Addresses

Every network interface on an 802.11 capable device

has a 48-bit MAC address layer-2 hardware identifier.

MAC addresses are designed to be persistent and glob-

ally unique. In order to guarantee the uniqueness of

MAC addresses across devices the Institute of Electrical

and Electronics Engineers (IEEE) assigns blocks of ad-

dresses to organizations in exchange for a fee. A MAC

Address Block Large (MA-L), commonly known as an

Organizationally Unique Identifier (OUI), may be pur-

chased and registered with the IEEE [3, 18], which gives

the organization control of and responsibility for all ad-

dresses with a particular three-byte prefix. The manu-

facturer is then free to assign the remaining low-order

three bytes (224 distinct addresses) any value they wish

when initializing devices, subject to the condition that

they do not use the same MAC address twice.

An implication of the IEEE registration system is

that it is trivial to look up the manufacturer of a device

given its MAC address. Using, again, the example of

a wireless eavesdropper, this means that anyone listen-

ing to 802.11 traffic can determine the manufacturer of

nearby devices. To combat this, the IEEE also provides

the ability to purchase a “private” OUI which does not

include the company’s name in the register. However,

this additional privacy feature is not currently used by

any major manufacturers that we are aware of.

01 : 23 : 45 : 67 : 89 : AB

OUI NIC

00000001 Unicast/Multicast Bit

Universal/Local Bit

Fig. 1. 48-bit MAC Address Structure

In addition to the public, globally unique, and man-

ufacturer assigned MAC address, modern devices fre-

quently use locally assigned addresses [8] which are dis-

tinguished by a Universal/Local bit in the most signifi-

cant byte. Locally assigned addresses are not guaranteed

to be unique, and generally are not used in a persistent

manner. Locally assigned addresses are used in a vari-

ety of contexts, including multi-Service Set IDentifier

A Study of MAC Address Randomization in Mobile Devices and When it Fails 367

(SSID) configured access points (APs), mobile device-

tethered hotspots, and peer-to-peer (P2P) services. A

visual depiction of the MAC address byte structure is

illustrated in Figure 1.

Most importantly for this paper, locally assigned

addresses may also be used to create randomized MAC

addresses as an additional measure of privacy. Similar

to an OUI, a three-byte Company Identifier (CID) pre-

fix can be purchased from the IEEE, with the agree-

ment that assignment from this address space will not

be used for globally unique applications [3]. As such, a

CID always has the local bit set, and is predisposed for

use within MAC address randomization schemas. One

such example, the Google owned DA:A1:19 CID [18], is

prominent within our dataset.

With the advent of randomized, locally assigned

MAC addresses that change over time, tracking a wire-

less device is no longer trivial. For this reason, we fre-

quently observe 802.11 probe requests using locally as-

signed addresses when the device is in a disassociated

state (not associated with an AP). When a mobile de-

vice attempts to connect to an AP, however, it reverts to

using its globally unique MAC address. As such, track-

ing smartphones becomes trivial while they are operat-

ing in an associated state.

Since mobile devices are usually only associated

while the user is relatively stationary (otherwise they

would be out of range of the AP), tracking them in this

state is less of a privacy vulnerability than having the

ability to track devices in an unassociated state, which

usually occurs when the user is moving from one lo-

cation to another. Additionally, there are several good

reasons to use a global address in an associated state,

such as to support MAC address filtering on the net-

work. Therefore we concentrate, in this paper, on eval-

uating randomization methods and tracking of unasso-

ciated devices.

2.2 Mobile OS MAC Randomization

A particularly sensitive privacy issue arises from the

manner in which wireless devices identify access points

within close proximity. Traditionally, devices perform

active scanning where they broadcast probe request

frames asking nearby APs to identify themselves and re-

spond with 802.11 parameter information required for

connection setup. These probe request frames require

a source MAC address, but if an 802.11 device uses

its globally unique MAC address then it is effectively

broadcasting its identity at all times to any wireless re-

ceiver that is nearby. Wireless device users can then

easily be tracked across temporal and spatial bound-

aries as their devices are transmitting with their unique

identity.

To combat this privacy concern, both Android and

Apple iOS operating systems allow for devices in a

disassociated state to use random, locally assigned

MAC addresses when performing active scans. Since the

MAC address is now random, users gain a measure of

anonymity up until they associate with an AP.

The particular software hooks used for randomiza-

tion vary between operating systems. See Appendix A

for a discussion of the OS mechanisms and configuration

files that support MAC randomization.

3 Related Work

Vanhoef et al. [28] present several techniques for track-

ing devices regardless of privacy countermeasures such

as MAC address randomization. These attacks rely on

devices’ support for Wi-Fi Protected Setup (WPS),

a protocol that allows unauthenticated devices to ne-

gotiate a secure connection with access points. Un-

fortunately, in order to facilitate this process, extra

WPS fields are added in a device’s probe requests that

contain useful information for device tracking. Among

these is the manufacturer and model of the device, but

also a unique identifier called the Universally Unique

IDentifier-Enrollee (UUID-E) which is used to establish

WPS connections. The flaw that Vanhoef et al. [28] dis-

covered is that the UUID-E is derived from a device’s

global MAC address, and by using pre-computed hash

tables an attacker can simply lookup the UUID-E from

the table and retrieve the global MAC address [20, 28].

We refer to this technique as UUID-E reversal. Since the

UUID-E does not change, the implication is that even

if the MAC address is randomized, an attacker can still

recover the original, global address by performing this

reversal technique on the UUID-E.

While the revelation of the flaw was significant, sev-

eral holes in the analysis were observed due to the

dataset on which the work was evaluated. The at-

tack was applied against an anonymized dataset from

2013 [9]. This dataset did not include randomized

MAC address implementations as they did not exist in

2013. Additionally, due to the fact that the data was

anonymized, and ground truth was not available, a val-

idation of the reversal technique was not provided. The

authors state that the address could not be confirmed to

A Study of MAC Address Randomization in Mobile Devices and When it Fails 368

be the WiFi MAC address, rather it may represent the

Bluetooth MAC address of the device. Because of this,

the reader is left with little understanding on the scope

of practical use of these attacks. Namely, is the attack

truly viable against devices performing randomization?

The first contribution of this paper is a better eval-

uation of the attacks presented by Vanhoef et al. [28].

Using more recent real-world data, we verify that this

technique is plausible for defeating randomization for

a small set of devices. However, we also show that an

improvement on their technique can achieve a higher

success rate, up 99.9% effectiveness against vulnerable

devices. We are also able to confirm that the retrieved

MAC address is in fact the 802.11 WiFi identifier and

not the Bluetooth address using additional techniques.

More importantly, we provide a real-world assessment

for the scope of the attack, revealing that only a small

portion of Android devices are actually vulnerable.

Vanhoef et al. [28] present an additional technique:

fingerprinting of the probe request 802.11 Information

Elements (IEs). IEs are optional, variable length fields

which appear in WiFi management frames and are gen-

erally used to implement extensions and special fea-

tures on top of the standard WiFi protocol. Importantly,

there are enough of these extensions and manufacturer

specific functions that the various combinations which

are supported on a particular device may be unique to

that device, causing the IEs to form a fingerprint which

can be used to identify traffic coming from that device.

However, we find one significant flaw in the eval-

uation of these fingerprints: locally assigned MAC ad-

dresses were ignored by the authors. Nearly all random-

ization schemes utilize locally assigned MAC addresses

to perform randomization. As such, previous research

failed to identify problems observed when tracking ran-

domized MAC addresses. A simple example of this is the

signature of a device’s probe request, which we observed

changing during randomization and even when not ran-

domizing. Only by observing these behaviors can we

truly implement effective derandomization techniques

and present honest reflections on the limitations of the

attack methods.

Also presented in [28] is a revival of the Karma at-

tack using a top-n popular SSID honeypot approach.

As noted above, MAC randomization stops once a de-

vice becomes associated with an AP. Karma attacks are

active attacks where a rogue AP is configured with an

identical name (SSID) to one that the device is set up

to automatically connect to [12]. In effect, this forces

the devices into an authenticated state where it reveals

its global MAC address and bypass randomization. We

validate this attack by finding that the increased preva-

lence of seamless WiFi-offloading from cellular networks

means that many devices in the wild are vulnerable.

A set of related work [12, 14, 21] explores the efficacy

of observing and evaluating the timing of probe request

frame transmissions in order to fingerprint wireless de-

vices. Franklin et al. [14] specifically focus on identifica-

tion of the device driver for a device’s Network Interface

Card (NIC). In an effort to extend this work to tracking

devices performing MAC address randomization, Matte

et al. [21] explore inter-arrival times of successive probe

requests frames. They present a novel timing-based at-

tack that requires no derived layer-2 or above attributes.

The dataset however, was transformed and derived from

non-randomized MAC addresses. We posit that the lack

of true randomized MAC address datasets limits the ac-

curacy and ability to understand the current state of

practice in MAC address randomization, the inherent

flaws, and the feasibility of derived attacks.

We find that previous methods, relying on higher

layer traffic attributes [26] prove unsuitable for defeat-

ing MAC address randomization. Mobile device MAC

address randomization implementations occur while a

device operates in an unassociated state and there-

fore do not transmit data frames, effectively eliminating

these attack methods. Furthermore security and privacy

countermeasures implemented by the OS have largely

rendered SSID profiling attacks [13] moot. These at-

tacks rely on deriving the unique SSIDs a device seeks

when transmitting directed probes during active scan-

ning. The practice of transmitting directed probe re-

quests has largely been eliminated by the OS. Where

directed probes are still used in practice we find the fea-

sibility of SSID-based attacks to be practically limited

to the aforementioned Karma attack.

4 Methodology

Our initial goal is to identify which mobile devices are

using randomization, in order to narrow down further

investigation into their exact methods for doing so.

Since this is not a capability that is advertised in a

specification, we resort to broad capture and analysis

of WiFi traffic in order to determine which device mod-

els are doing randomization.

Over the course of approximately two years, we

captured unencrypted 802.11 device traffic using inex-

pensive commodity hardware and open-source software.

We primarily use an LG Nexus 5 Android phone run-

A Study of MAC Address Randomization in Mobile Devices and When it Fails 369

ning Kismet PcapCapture paired with an AWUS036H

802.11b/g Alfa card. We hop between the 2.4GHz chan-

nels 1, 6, and 11 to maximize coverage. We additionally

employ several Raspberry Pi devices running Kismet

with individual wireless cards each dedicated to chan-

nels 1, 6, and 11. Our corpus spans January 2015 to

December 2016 and encompasses approximately 9,000

individual packet captures. The collection contains over

600 gigabytes (GBs) of 802.11 traffic, consisting of over

2.8 million unique devices.

It is important to note that, since devices only ran-

domize when they are unassociated, the only traffic

we are interested in is 802.11 management frames and

unencrypted multicast Domain Name System (mDNS)

packets. Therefore we did not capture actual intentional

user traffic from the device, i.e. web browsing, email,

etc., but only automatic, non-personal traffic sent by

the device.

4.1 Ethical Considerations

Our collection methodology is entirely passive. At no

time did we attempt to decrypt any data, or perform

active actions to stimulate or alter normal network be-

havior while outside of our lab environment. However,

given the nature of our data collection, we consulted

with our Institutional Review Board (IRB).

The primary concerns of the IRB centered on: i) the

information collected; and ii) whether the experiment

collects data “about whom” or “about what.” Because

we limit our analysis to 802.11 management frames and

unencrypted mDNS packets, we do not observe Person-

ally Identifiable Information (PII). Although we observe

IP addresses, our experiment does not use these layer-3

addresses. Even with an IP address, we have no reason-

able way to map the address to an individual. Further,

humans are incidental to our experimentation as our in-

terest is in the randomization of wireless device layer-2

MAC addresses, or “what.” Again, we have no way to

map MAC addresses to individuals.

Finally, in consideration of beneficence and respect

for persons, our work presents no expectation of harm,

while the concomitant opportunity for network mea-

surement and security provides a societal benefit. Our

experiment was therefore determined to not be human

subject research.

4.2 Identifying Randomization

We know devices implement MAC randomization in dif-

ferent ways. In order to quantify the vulnerabilities of

employed randomization policies, we first attempt to

categorize devices into different bins, with identical be-

havior, so that we can investigate characteristics of these

individual techniques and seek to identify flaws in their

implementation. For instance, as we will see, all iOS

devices fall into the same bin, in that they handle ran-

domization in a similar way. Android devices, on the

other hand, differ significantly from iOS, and also vary

greatly from manufacturer to manufacturer.

Our first step is to identify whether a device is

performing randomization. This starts with extracting

all source MAC addresses derived from probe request

frames in our corpus. If the local bit of the MAC

address is set, we store the address as a locally as-

signed MAC address in our database. Since randomized

addresses cannot be unique, we assume at this point

that any device using randomization will set the local

bit in its MAC address and therefore all randomiza-

tion candidates will be in this data set. For each ad-

dress we then parse the advertised WPS manufacturer,

model_name, model_number, and uuid_e values. Addi-

tionally, we build signatures derived from a mapping of

the advertised 802.11 IE vendor fields using techniques

from related work in device-model classification [16, 28].

Each MAC address, associated WPS values (when ap-

plicable), and the device IE signature are stored in our

database.

Our device signatures are created using custom built

Wireshark dissectors to parse the 802.11 vendor IE fields

and values. Our modifications to standard wireshark

files (packet-ieee80211.c and packet-ieee80211.h) allow

us to efficiently create the individual device signatures

as we process the packet captures, eliminating any need

for post-processing scripts. Furthermore, this allows us

to use a signature as a display filter while capturing. We

will later use the device signatures for both passive and

active derandomization techniques.

Our corpus contained a total of ∼66 million indi-

vidual probe requests. We have a dataset of 2.6 mil-

lion unique source MAC addresses after removing du-

plicates. In Table 1 we observe that 1.4 million (∼53%)

of the 2.6 million distinct MAC addresses had locally

assigned MAC addresses. Recall that locally assigned

addresses are not only used for randomization. There-

fore, after partitioning the corpus, we separate the 4,371

locally assigned MAC addresses that are used for ser-

vices such as P2P and WiFi-Extenders from those used

A Study of MAC Address Randomization in Mobile Devices and When it Fails 370

Table 1. Corpus Statistics

Category # MACs

Corpus 2,604,901

Globally Unique 1,204,148

Locally Assigned 1,400,753

Table 2. Locally Assigned Bins

Category # MACs

Locally Assigned 1,400,753

Randomized 1,388,656

Service 4,371

Malformed 6,895

Unknown 831

Table 3. Randomization Bins

Category # MACs

Randomized 1,388,656

Android: DA:A1:19 (WPS) 8,761

Android: DA:A1:19 43,924

Android: 92:68:C3 (WPS) 8,961

iOS 1,326,951

Windows 10 / Linux 59

as randomized addresses for privacy purposes. Doing so

required us to manually inspect the frame attributes

and look for identifying characteristics.

One prevalent P2P service that makes use of lo-

cally assigned addresses is WiFi-Direct. Fortunately,

WiFi-Direct operations contain a WiFi-Direct IE

(0x506f9a,10). Specifically, the following attributes are

are observed with all WiFi-Direct traffic: i) WiFi-Direct

IE is present, ii) the observed OUI is simply the original

OUI with the local bit set, and iii) the SSID value, if

observed, is set with a prefix of DIRECT-. Furthermore,

manual inspection of the packet capture reveals that

these devices use a single locally assigned MAC address

for all observed probe request frames. As these devices

are not conducting randomization we remove them from

our dataset.

Similarly, Nintendo devices operating in a P2P

mode are observed utilizing a locally assigned address.

Associated frames use a modified Nintendo OUI, one

with the local bit set. Additionally, all Nintendo P2P

probe requests contain a unique Vendor Specific IE,

0x00:1F:32, allowing for an efficient identification and

removal from our dataset.

The remainder of our service-based locally assigned

addresses were attributed to WiFi extenders forward-

ing client probe requests. These were also identified as

modifying their original OUI by setting the local bit.

Commonly observed OUIs, such as Cisco, D-Link, and

Belkin indicated a likely association to infrastructure

devices. We confirmed our assumptions through man-

ual packet analysis, which showed: i) the MAC address

never changes, ii) each unique device probes for only

one SSID, and iii) devices with WPS attributes clearly

indicate wireless extender models.

The 6,895 frames labeled as malformed had im-

proper frame control bits set or incorrect Frame Check

Sequences (FCSs). The remaining 831 unknown MAC

addresses contained insufficient context for us to accu-

rately categorize. We suspect that a portion of the un-

known devices are Windows 10 or Linux laptops.

Table 2 illustrates that 99.12% of all locally assigned

mac addresses are randomized addresses, representing

∼53% of our total corpus. While this may seem like it

indicates a large rate of adoption for MAC randomiza-

tion, these addresses do not directly correlate to the

number of unique devices in our dataset. While glob-

ally unique addresses have a 1-to-1 relationship with

individual devices, a device performing randomization

has a 1-to-many relationship. It is plausible that a de-

vice conducting randomization may have tens of thou-

sands of addresses over a collection period. To illus-

trate this behavior we observe in Section 5.1.2 where

8,761 DA:A1:19 MAC addresses resolve to 2,341 unique

devices, a roughly 4:1 reduction. Similarly, we observe

8,961 92:68:C3 MAC addresses reduce to 849 distinct

devices, a more than 10:1 reduction. Therefore, while

∼53% of our corpus is made up of randomized addresses,

we posit that a significantly smaller representation of

devices conduct randomization.

Our goal, to identify and evaluate potential flaws in

currently fielded randomization policies, requires that

we must first answer non-trivial questions about our

real-world dataset. How many devices were actually

performing randomization? Which manufacturers and

models have implemented randomization in practice and

why? What operating systems are prevalent? Which

randomization policies are actually used?

As discussed above, we must first identify distinct

bins of randomization within the data. Table 3 high-

lights the results of this analysis. We completed this

analysis by evaluating the following; i) the MAC ad-

dress prefix (OUI, CID, random), ii) WPS attributes,

iii) 802.11 IE derived device signatures, and iv) mDNS

fingerprinting techniques [20]. Lastly, we confirm our

analysis using devices procured by our team and evalu-

ated in a controlled Radio Frequency (RF) environment.

We provide detailed analysis of our methods, results,

and answers to our stated questions in §5.

A Study of MAC Address Randomization in Mobile Devices and When it Fails 371

5 Analysis

5.1 Android Randomization

After removing all of the service-based locally assigned

MAC addresses described in §4.2, we aim to separate the

remaining ∼1.388 million addresses into distinct bins.

First we perform a simple query of our database where

we identify the most common three byte prefixes. We

expect that the prefixes with the highest occurrences

will be the CID owned by the representative devices.

Our findings were surprising: first, the Google owned

CID DA:A1:19, was by far the most commonly observed

prefix (52,595), while the second most common prefix

92:68:C3, observed 8,691 times was not an IEEE allo-

cated CID, but rather a Motorola owned OUI with the

local bit set [18].

The remaining 177k observed three-byte prefixes,

each with total occurrences ranging from a low of two

to a high of seven, show no indication of being a defined

prefix or CID. While we expected to see the Google

owned CID, we also expected to see additional CIDs

configured by manufacturers to override the default

Google CID.

5.1.1 92:68:C3

Investigating the 92:68:C3 prefix in more detail, we see

that devices using this prefix always transmit granular

WPS details. This is helpful as it lets us easily determine

the device model (see §3). First, the Motorola Nexus 6 is

the only device using this prefix. Using the WPS derived

UUID-E as a unique identifier, we see that there were

849 individual Motorola Nexus 6 devices in our dataset.

Second, in order to retrieve the global MAC address

we use the UUID-E reversal technique previously men-

tioned [20, 28]. We find that the actual prefix of the de-

vice’s MAC address is not the expected 90:68:C3 OUI.

Rather, we observe a set of different Motorola owned

OUIs. In combination with with the config.xml file (see

Appendix A) retrieved from publicly available reposito-

ries we identify that the prefix 92:68:C3 was purpose-

fully set by Motorola to replace the Google owned CID.

Searching open source Android code repositories re-

vealed no additional config.xml defined prefixes other

than the Google and Motorola ones. This matches what

we observe in our real-world dataset.

Table 4. DA:A1:19 Manufacturer Breakdown

Manufacturer Total Devices Model Diversity

Huawei 1,708 11

Sony 277 23

BlackBerry 234 4

HTC 108 2

Google 13 2

LG 1 1

5.1.2 DA:A1:19

The analysis of the Google CID DA:A1:19 proved more

complex, having serious implications to prior work in

derandomization attacks. Unlike the Motorola prefix,

not all devices using the Google CID transmit WPS

attributes. This had multiple effects on our analysis.

First, we were unable to easily identify the manufacturer

and model information when no WPS information was

present. Lacking a UUID-E, we were unable to precisely

identify total device counts. More importantly, we were

unable to retrieve the global MAC address via the rever-

sal technique. Surprisingly, only ∼19% of observed MAC

addresses with the Google CID contain UUID-E values.

Since the reversal technique of Vanhoef et al. [28] re-

quire a UUID-E, this emphasizes the fact that previous

evaluations are insufficient. A large majority of Android

phones are not vulnerable to UUID-E reversal, despite

how valuable the technique initially seems.

We evaluated the 8,761 addresses that have WPS

values before attempting to breakdown the 43,924

DA:A1:19 MAC addresses with no WPS information. We

observed a diverse, yet limited spread of manufacturers

and models, depicted in Table 4. Huawei was the most

prevalent manufacturer observed, primarily attributed

to the (Google) Nexus 6P (1660 unique devices). Various

versions of the Huawei Mate and Huawei P9 were also

commonly observed. Sony was well-represented with 277

unique devices across 23 variations of Xperia models.

There were several surprising observations in this list,

namely that Samsung was absent despite having the

largest market share for Android manufacturers [23].

Blackberry, HTC, and LG were also poorly represented.

The Blackberry device models were actually four deriva-

tions of the Blackberry Priv, accounting for 277 unique

devices observed. HTC was largely represented by the

HTC Nexus 9 from the Google Nexus line, which ex-

plains the likely use of randomization. The HTC One

M10 was the remaining HTC device and was only ob-

served once. The only observed LG device was the LG

G4 model. We provide a full device breakdown in Ap-

pendix C.

A Study of MAC Address Randomization in Mobile Devices and When it Fails 372

In all, devices having randomized MAC addresses

with a Google CID and containing WPS attributes

amount to a total of 2,341 unique devices. Taking into

account the 849 unique Motorola Nexus 6 devices, only

3,188 devices spanning 44 unique models are suscepti-

ble to the UUID-E reversal attack. Effectively, ∼99.98%

of the locally assigned MAC addresses in our corpus

are not vulnerable to the UUID-E attack. Furthermore,

our corpus contains approximately 1.2 million client de-

vices with globally unique MAC addresses and over 600

manufacturers and 3,200 distinct models using WPS

data fields. This begs the question, are a large num-

ber of Android devices not conducting randomization?

Do we expect the 43,924 randomized addresses using the

Google CID that did not not transmit WPS information

to make up all remaining Android devices?

We attempt to answer these questions by evaluating

the 43,924 DA:A1:19 MAC addresses where no WPS de-

rived data is available. The process proceeds as follows:

1. Divide the entire bin into segments, based on the

device’s signature described in §4.2, resulting in 67

distinct device signatures, with a starting hypothe-

sis that each signature represents a distinct model

of phone.

2. For each signature, parse every packet capture file

where that device signature and the CID DA:A1:19

were observed.

3. Apply to our parsing filter our custom Tshark device

signature and limit to probe request frames.

The output of the algorithm is the source MAC address,

sequence number, SSID, and device signature.

Left with 2,858 output files, each mapping a device

signature with distinct packet capture, we systemati-

cally retrieve the global MAC addresses for the ran-

domized devices. We will describe in detail the methods

for derandomization for this portion of the dataset in

§6. After we obtain the global MAC address for the set

of randomized MAC addresses within each bin, we at-

tempt to identify the device model using a variety of

techniques. It is trivial to identify the manufacturer as

the OUI provides sufficient resolution. However, in or-

der to conjecture as to the device model we borrow from

the work of [20] in which we obtain model granularity

from MAC address decomposition. Next, we look for

any case where a device using a global MAC address as

the source of a probe request matches the desired signa-

ture and also transmitted a mDNS packet at some point.

For this subset we simply retrieve the model information

Table 5. DA:A1:19 no WPS

Category Confirmed % of no WPS

Bin 1 57.7%

LG Nexus 5X
√

Google Pixel
√

Bin 2 18.5%

LG G5
√

LG G4
√

Bin 3 2.0%

OnePlus 3
√

Xiaomi Mi Note Pro
√

Bin 4 .2%

Huawei
√

Sony
√

Bin 5 2.6%

Cat S60
√

Bin 6 12.2%

Composite
√

Bin 7 6.8%

Unknown

from the mDNS packet [20]. This leaves us with guesses

as to what devices randomize MAC addresses using the

DA:A1:19 CID and transmit no granular WPS-derived

model data. We posit that our set of 67 signature bins

can be condensed into groups of similar signatures based

on our derived model correlations.

In order to better evaluate our assumptions, and

now that we have a smaller, manageable set of possible

devices, we procure devices for lab testing. We test each

device using an RF enclosed chamber to ensure we limit

our collection to only our individual test phones. We

leave each device in the chamber for approximately five

minutes, collecting only the probe requests.

We evaluate the collection results by comparing to

our derived signatures and ask the following: do we ob-

serve MAC address randomization? If so, does the de-

vice signature match expectations when using a global

address? Similarly, does the device signature match ex-

pectations when using a randomized address? Our find-

ings are presented in Table 5.

Bin 1 is represented by the Google devices LG Nexus

5X and Google Pixel. This bin encompasses 57.7% of the

43,924 MAC addresses observed using the Google CID

without WPS data. It is prudent to mention that we

cannot claim that is an exhaustive list of devices imple-

menting randomization using this set of signatures.

Next, we evaluate bin 2, representing 18.5% of the

category’s total. We observe only LG devices, specifi-

cally we posit that LG G series devices make up this

subset. We confirm that both the LG G4 and G5 de-

vices match the signatures and behavior of this bin. We

A Study of MAC Address Randomization in Mobile Devices and When it Fails 373

surmise that additional G series devices are represented,

however we have no validation at this time. Worth men-

tioning is that the LG G4 and Pixel identified in the pre-

vious DA:A1:19 with WPS section were only observed

because a WPS action was triggered. By default, WPS

data is not transmitted by the devices in our no-wps cat-

egory. We confirm this analysis in our lab environment,

observing WPS data fields only when the user triggers

a WPS event.

In bin 3, a smaller bin (2%), the OnePlus 3, and the

Xiamoi Mi Note Pro are representative of the identified

signatures.

Bin 4, the smallest of our bins with less than one

percent of our dataset, consisted of Huawei and Sony

devices. These are devices seen using WPS, but in some

frames do not include the WPS data fields.

The Cat S60 smartphone was the only device iden-

tified in bin 5. As in other bins, we make no claim that

no other devices share this signature.

Bin 6 represents a combination of the aforemen-

tioned devices observed in the various bins. This is

caused by a device, that on occasion rotate between

a standard device signature and a stripped down ver-

sion with limited 802.11 IE fields. An example of this

signature behavior is described in §6.4 and depicted in

Figure 2. As such, this bin is represented by the previ-

ously mentioned devices.

We fail to identify anything with any sense of con-

fidence within bin 7.

5.1.3 Motorola

After an exhaustive look at the randomization schemes

employed by Android we still lack any evidence of MAC

address randomization by Samsung or Motorola devices

(other than the Google based Motorola Nexus 6). We

attempt to find any evidence of non-standard random-

ization employed by these models by looking at probe

requests with globally assigned MAC addresses. In a

similar manner to how we identified the most common

prefixes for locally assigned addresses, we attempt to

identify OUIs with unusually high occurrences within

individual packet captures. Our premise is that this will

indicate the use of an OUI as a prefix for a set of ran-

domized MAC addresses.

We first ruled out all P2P service related addresses

as previously described, leaving a single manufacturer of

interest - Motorola. We identified multiple occurrences

of various Motorola OUIs with an abnormally high per-

centage of the unique addresses in a packet capture.

After inspecting forty captures with this anomaly we

confirmed that a subset of Motorola devices perform

randomization using neither a CID nor an OUI with

the local bit set. These devices used one of several Mo-

torola owned OUIs, using the global MAC address oc-

casionally, and a new randomized MAC address when

transmitting probe requests.

This is an especially strange result because it shows

that Motorola is using randomized global addresses.

This violates the core expectation that no two devices

will use the same global MAC address. In particular, it

is possible for one of these devices to temporarily use

the true, global MAC address of another device as one

of its random addresses.

We identified two distinct signatures consistently

observed within this Motorola dataset. Using the afore-

mentioned mDNS techniques to guess a device model

we posit that one signature belongs to the Moto G4

model while the second corresponds to a Moto E2. We

acquired Moto G4 and E2 smartphones and confirmed

our hypothesis. Additionally, we observed that a Moto

Z2 Play device model shares the same randomization

behavior and signature as the Moto G4.

5.1.4 Samsung

It is interesting to note that we never observed Samsung

devices performing MAC address randomization, de-

spite being the leading manufacturer of Android smart-

phones [2]. Samsung uses their own 802.11 chipsets, so

it is possible that chipset compatibility issues prevent

implementing randomized MACs addresses.

Samsung devices (200k+) represent ∼17% of client

devices and ∼23% of non-Apple devices in our data set,

contributing substantially to the low adoption rate that

we see. Our observations closely match Samsung’s 2016

third quarter market share of ∼21% [2]. In our lab set-

ting we confirm Samsung’s lack of randomization when

tested against a wide range of Samsung models and OS

versions.

5.2 iOS Randomization

After completing the randomization analysis of Android

devices, we still have over 1.3 million MAC addresses not

attributed to any randomization scheme. Next we turn

to the analysis of iOS randomization.

Upon the release of iOS 8.0, Apple introduced MAC

address randomization, continuing with minor but valu-

A Study of MAC Address Randomization in Mobile Devices and When it Fails 374

able updates to the policy across subsequent iOS re-

leases. We were faced with an immediate dilemma, how

do we identify iOS associated probe requests? Apple iOS

devices do not transmit WPS fields to indicate any sort

of model information, and we had no knowledge of any

Apple owned CID. In order to identify any prefix pat-

tern we once again utilized our RF-clean environment

to test Apple device behavior. Our goal was to create as

many randomized MAC addresses as possible from a de-

vice and look for a pattern in the resulting prefixes. To

force a new randomized MAC address we simply enable

and disable WiFi mode repeatedly.

Our initial thought was that Apple would use an

OUI or CID like other manufacturers and simply ran-

domize the least significant 24 bits of the MAC address.

However, we quickly found that the MAC addresses ran-

domly generated by iOS devices do not share any com-

mon prefix. In fact, they appear to be completely ran-

dom, including the 24 OUI bits, except for the local bit

which is always set to 1 and the multicast bit which is

set to 0. To lend credence to this new hypothesis we

sampled 47,255 random MAC addresses from an iOS

device and ran standard statistical tests to determine

if they were uniformly distributed (see Appendix B).

These tests confirmed that, with the exception of the

local and unicast bit, iOS most likely implements true

randomization across the entire MAC address. This is

interesting given the fact that the IEEE licenses CID

prefixes for a price, meaning that Apple is freely mak-

ing use of address space that other companies have paid

for.

Based on these findings, we are faced with identi-

fying a randomization scheme where randomness is ap-

plied across 2
46 bits of the byte structure. We can not

simply assume that if the prefix does not match an off-

set of an allocated OUI that it is an iOS device. This is

due to the aforementioned clobbering of other manufac-

turers OUI space. Our next step was to leverage the use

of mDNS once again. We take the union of global MAC

addresses derived from probe requests that are also seen

as source addresses for iOS related mDNS packets. This

results in a set of probe requests that we can confirm

are Apple iOS devices. We then extract all of the signa-

tures for these devices. We suspected that this retrieved

only a portion of the relevant iOS signatures. Next we

collected signatures from all of our Apple iOS lab test

devices using our RF enclosure. Finally, we identify sig-

natures of all remaining locally assigned MAC addresses

in which we have no assigned categorization. We then

seek to find any probe requests with global source ad-

dress that have matching signatures. If the OUI of the

global addresses resolves to an Apple OUI we consider

that a valid signature. This is slightly different than our

mDNS test as we cannot attribute the signature to a

specific set of iOS device models. We test our entire iOS

signature set and ensure that no non-iOS global MAC

addresses are ever observed with these signatures.

In June 2016, midway through our research, iOS

10 was released. Inexplicably the addition of an Apple

vendor specific IE was added to all transmitted probe

requests. This made identification of iOS 10 Apple de-

vices trivial regardless of the use of MAC address ran-

domization. We believe the difficulty of identifying MAC

address randomization to be one of the best countermea-

sures to defeating randomization. The data field associ-

ated with this IE never changes across devices, providing

no ability to discern distinct devices. However, it triv-

ially confirms that the frame originated from an Apple

iOS device where prior methods of identification were

laborious.

Using our combined set of all Apple iOS signatures,

we identify ∼1.3 million distinct randomized MAC ad-

dresses, by far the most populous (94.7%) of our ran-

domization categories.

5.3 Windows 10 and Linux Randomization

To conclude our categorization of randomization

schemes, we look to identify the probe requests from

devices using Windows 10 and Linux MAC address ran-

domization implementations. Our first test compares

the signatures obtained from laboratory laptops to the

signatures of our locally assigned dataset. We find 59

matches to our laptop signatures, indicating possible

Windows 10 or Linux randomization. Next, we parse

collection files using the locally assigned MAC addresses

from the probe request frames of these devices. Our hy-

pothesis, if we find matching locally assigned MAC ad-

dresses in authentication, association, or data frames,

that the randomizations scheme is likely Windows 10

or Linux. This assumption is due to the fact that the

randomization policies use the same locally assigned ad-

dress for network establishment and higher layer data

frames. To that end, we find that 14 of the 59 devices

assessed to be Windows/Linux computers use a locally

assigned MAC address when associated to a network.

A Study of MAC Address Randomization in Mobile Devices and When it Fails 375

6 MAC Randomization Flaws

Now that we have a baseline understanding of the ran-

domization implementations used by modern mobile

OSs we are able to assess for vulnerabilities.

6.1 Adoption Rate

The most glaring observation, while not necessarily

a flaw, per se, is that the overwhelming majority of

Android devices are not implementing the available ran-

domization capabilities built into the Android OS. We

expect that this may be partly due to 802.11 chipset

and firmware incompatibilities. However, some non-

randomizing devices share the same chipsets as those

implementing randomization, so it is not entirely clear

why they are not utilizing randomization. Clearly, no

effort by an attacker is required to target these devices.

6.2 Global Probe Request

We next explore the flaws of the observed MAC address

randomization schemes. One such flaw, the inexplicable

transmission of the global MAC address in tandem with

the use of randomized MAC addresses. We observe this

flaw across the gamut of Android devices. The single

device in which we do not observe this was the Cat S60

smartphone. In no instance did the Cat S60 transmit a

global MAC address probe request, except immediately

prior to an association attempt. Exploiting this flaw it

was trivial to link the global and randomized MAC ad-

dresses using our device signatures and sequence num-

ber analysis. Between probe requests, the sequence num-

bers increase predictably so an entire series of random

addresses can be linked with a global address by just

following the chain of sequence numbers. While using

sequence numbers has been discussed before in prior

work [28], the fact that the global MAC address is uti-

lized while in a supposedly randomized scan state has

not. This strange behavior is a substantial flaw, and

effectively negates any privacy benefits obtained from

randomization.

In our lab environment we observed that in addi-

tion to periodic global MAC addressed probe requests,

we were able to force the transmission of additional such

probes for all Android devices. First, anytime the user

simply turned on the screen, a set of global probe re-

quests were transmitted. An active user, in effect, ren-

ders randomization moot, eliminating the privacy coun-

termeasure all together. Second, if the phone received

a call, regardless of whether the user answers the call,

global probe requests are transmitted. While it may not

always be practical for an attacker to actively stimulate

the phone in this manner, it is unfortunate and discon-

certing that device activity unrelated to WiFi causes

unexpected consequences for user privacy.

6.3 UUID-E Reversal

Vanhoef et al. [28] introduce the UUID-E reversal attack

against Android devices. Devices transmitting probe re-

quest frames with WPS enriched data fields, specifi-

cally, the UUID-E are vulnerable to a reversal attack

where the global MAC address can be retrieved using

the WPS UUID-E value. The flaw is caused by the con-

struction of the UUID-E, where the MAC address is

used as an input variable along with a non-random hard-

coded seed value. This implementation design flaw al-

lows for the computation of pre-computed hash tables,

whereby retrieving the global MAC address requires

only a simple search of the hash tables. This revela-

tion, while both groundbreaking and disconcerting, still

leaves the reader to guess as to the plausibility of the at-

tack against randomized devices. We find several issues

with their approach, specifically in respect to derandom-

ization analysis: i) randomization was not employed in

2013, when the data used in their evaluation was gath-

ered ii) anonymized data eliminates accuracy checks,

and iii) removing locally assigned MAC addresses ef-

fectively eliminates the ability to evaluate the attack

against devices performing randomization.

Accordingly, we use our corpus of DA:A1:19 and

92:68:C3 datasets to evaluate the effectiveness and via-

bility of the UUID-E attack. Our foremost observation is

that only 29% of random MAC addresses from Android

devices include WPS attributes. Effectively 71% of this

Android dataset is completely immune to the UUID-E

reversal attack. This is in addition to the fact that iOS

devices are wholly immune to the attack, as they do not

use WPS. We refer back to Table 4 the limited number

of Android models performing randomization and trans-

mitting the necessary WPS UUID-E attribute.

We then retrieve the global MAC address from the

probe requests of these devices that used both random

and global MAC addresses, exploiting the previously

discussed flaw. We use this set of 1,417 ground truth

MAC addresses to test the effectiveness of the UUID-E

reversal attack. First we pre-compute the required hash

tables. To build hash tables for the entire IEEE space

would be non-trivial, requiring significant disk space and

A Study of MAC Address Randomization in Mobile Devices and When it Fails 376

SigG = 0,1,50,3,45,221(0x50f2,8),htcap:012c,htagg:03,htmcs:000000ff

SigR = 0,1,50

Fig. 2. Device Signature (Motorola Moto E2)

processing time. While an exhaustive compilation of the

address space is certainly possible, we use the knowledge

gained from decomposing the randomization schemes to

efficiently construct our tables. We build the hash ta-

bles using only the OUIs owned by manufacturers we

have observed to implement randomization. The result-

ing hash table is a manageable 2.5TBs, where using pre-

sorting techniques, we can retrieve an UUID-E’s global

MAC address in < 1 second.

We retrieve a global MAC address for 3,187 of the

3,188 UUID-Es. In previous work it was left inconclu-

sive whether the retrieved MAC addresses were in fact

the global 802.11 MAC address or instead the Bluetooth

MAC address. The UUID-E derived from the HTC One

M10 device, was the example UUID-E listed in the

wpa_supplicant.conf file. With exception of the HTC

Nexus 9, all HTC phones in our dataset (regardless of

randomization) used this non unique UUID-E.

Comparing the 1,417 ground truth addresses to

those retrieved from the UUID-E attack we achieve a

100% success rate. Indicating that the retrieved ad-

dresses are in fact the global 802.11 MAC addresses,

completing the missing link from the evaluation of Van-

hoef et al. [28].

6.4 Device Signature

To aide in derandomization we employ fingerprinting

techniques, using signatures derived from the 802.11 IEs

borrowed from previous work [16, 28]. We used this tech-

nique first to aide in the identification of the random-

ization schemes employed by Android and iOS devices.

This technique allows us to remove all extrane-

ous probe request traffic, providing us a “cleaner”

dataset in which to employ sequence number analy-

sis. We modify the Wireshark files packet-ieee80211.c

and packet-ieee80211.h, creating a new dissector filter,

device.signature. We are able to filter previous collec-

tion files as well as conduct filtering on live collection.

While our contribution to the Wireshark distribution

is novel, the fingerprinting technique is not, as we bor-

rowed from related work. However, prior work tested

against datasets not performing randomization which

fails to provide accurate context. We test the signature

technique against our real world corpus, revealing flaws

in previous signature based attacks.

Regardless of the Android implementation, a de-

vice transmits probe request frames which have vary-

ing signatures (based on IEs, see §3). Devices often use

two or more signatures while using a global MAC ad-

dress, so simply using the signature is insufficient. Ad-

ditionally, the same holds for randomized addresses, in

which we observe multiple signatures. In both cases, the

second signature, has minimal 802.11 IEs. Due to the

fact that nearly all devices periodically use this signa-

ture, it creates significant complexity to any signature

based derandomization attack. Finally, as Figure 2 il-

lustrates, we observe that most Android devices use dif-

ferent signatures when randomizing compared to when

using a global MAC address. As such, previously de-

scribed signature-based tracking methods fail to corre-

late the addresses. Using our decomposition of Android

randomization schemes, and the derived knowledge of

how distinct bins of devices behave, we properly pair

the signatures of probe requests using global and ran-

domized MAC addresses. Only by combining these sig-

natures are we able to accurately and efficiently retrieve

the global MAC address.

We observe no such change in signatures of iOS de-

vices within a collection timeframe. While an iOS device

may not use alternate signatures, they do not send glob-

ally addressed probe requests. Therefore, at this junc-

ture, we have not identified a method of resolving the

global MAC address.

6.5 Association/Authentication Frames

We observe that Android and iOS devices use sequen-

tial sequence numbers across management frame types.

Using only passive analysis we can follow a devices tran-

sition from randomized probe requests to an authentica-

tion or association frame by following the sequence num-

bers. This is particularly useful as all authentication and

association frames from iOS and Android devices use

the global MAC address. Using the techniques described

in [16] we create a set of signatures for the association

frames of iOS devices, specifically to aide in confirma-

tion that the device observed in the probe request is

also the same device type as the association frame. This

A Study of MAC Address Randomization in Mobile Devices and When it Fails 377

method relies on the targeted device attempting to es-

tablish a network connection with a nearby AP. As this

is fairly user-activity dependent, we reinvestigate the

plausibility of the Karma attack against current ran-

domization schemes.

6.6 Karma Attack

The current versions of iOS and Android randomization

policies have eliminated the vast majority of cases where

a directed probe is used. A directed probe is a probe re-

quest containing a specified SSID that the device wishes

to establish a connection (a previously known or con-

figured SSID), as opposed to a broadcast probe which

solicits a response from all APs in range. Today, the pre-

dominant use of broadcast probes has directly effected

the ability for a Karma-based attack to succeed. Karma-

based attacks work by simulating an access point that

a device prefers to connect to. A variety of implications

such as man-in-the-middle attacks are common follow-

on consequences, however we are only interested in re-

trieving the global MAC address and therefore require

only a single authentication frame to be transmitted by

a targeted device. To this end Vanhoef et al. [28] also in-

vestigate Karma attacks, implemented via a predefined

top-n SSID attack, achieving a 17.4% success rate, albeit

not specifically related to devices performing random-

ization.

Unlike previous work, we observe devices while in a

randomized state in order to identify specific behaviors

that directly counteract randomization privacy goals.

Specifically, do we observe traits that allow for a tar-

geted Karma attack? It is well known that hidden net-

works require directed probes, so while this is a vulner-

ability to randomization, it is fairly uncommon, and a

decision in which a user chooses to implement. Similarly,

previous connections to ad hoc networks, saved to the

devices network list, cause both Android and iOS de-

vices to send directed probes. As with hidden networks,

this uncommon condition requires action from the user,

however when observed, the Karma attack is viable.

Finally, we observe a more disconcerting trend: de-

vices configured for seamless cellular to WiFi data-

offloading, such as Hotspot 2.0, EAP-SIM and EAP-

AKA force the use of directed probes and are inherently

vulnerable to Karma-based attacks [6]. The expanding

growth of such handover polices reveals a significant

vulnerability to randomization countermeasures. Fur-

ther exasperating the problem, these devices are pre-

configured with these settings, requiring no user inter-

action. We confirmed these settings by inspecting the

wpa_supplicant.conf file of a Motorola Nexus 6 and

Nexus 5X. Removing the networks from the configu-

ration file requires deletion by a rare user with both

command line savvy and awareness of this issue.

We test for the presence of these network configura-

tions in our corpus by evaluating all randomized ad-

dresses using WPS fields. We are able to accurately

evaluate unique devices using the UUID-E value as

the unique identifier. We filter for any instance where

the device sends a directed probe, retrieving the SSID

value for each. Sorting by most common occurrence

the top three most common SSIDs were BELL_WIFI,

5099251212, and attwifibn. The SSIDs BELL_WIFI

and 5099251212 are used by the mobile carrier Bell

Canada for seamless WiFi offloading. Interestingly, the

attwifibn SSID is related to free WiFi hotspots pro-

vided by the Barnes and Noble bookstore. Only ∼5%

of the 3,188 devices transmitted a directed probe. How-

ever, of those that did, 17% were caused by the precon-

figured mobile provider settings.

6.7 Control Frame Attack

We now evaluate active attack methods for identifying a

device by its global MAC address while in a randomized

state. Our premise: can we force a device performing

MAC address randomization to respond to frames tar-

geting the global MAC address? This would allow for

easy tracking of devices, even when they are random-

izing, because an active attacker could elicit a specific

response from them at any time if they are within wire-

less range.

State 3

Authenticated

and associated

State 2

Authenticated

and unassociated

State 1

Unauthenticated

and unassociated

Class 1, 2, and 3 frames

Class 1 and 2 frames

Class 1 frames

Disassociation

Deauthentication

Association

Authentication

Fig. 3. 802.11 State Diagram

A Study of MAC Address Randomization in Mobile Devices and When it Fails 378

Table 6. Class 1 Frames [15]

Control Management Data

RTS Probe Request Frame w/DS bits false

CTS Probe Response

Ack Beacon

CF-End Authentication

CF-End+CF-Ack Deauthentication

ATIM

Figure 3 depicts the 802.11 state diagram illus-

trating the various states of association for 802.11 de-

vices [15]. We are particularly interested in the frame

types that can be sent or received while in an unau-

thenticated and unassociated state (State 1). The frame

types (Class 1 frames) allowed while in State 1 are de-

picted in Table 6.

In our lab environment, we use packet crafting tools

(SCAPY, libtins) to transmit customized packets for

each frame type, targeting the global MAC of the device.

The source MAC address of the frame is a uniquely

crafted MAC address. It is not the actual MAC address

of our transmitter. This ensures that we can accurately

track any responses to our crafted message, removing

any possible control frames that happen to be sent to

the actual transmitter address. Of the twelve Class 1

frame types used for the attack, we successfully elicited

a response from only the Request-to-Send (RTS) frame.

Request to Send and Clear to Send (RTS/Clear-to-

Send (CTS)) transmissions are available in the IEEE

802.11 specification as part of a Carrier Sense Multiple

Access with Collision Avoidance scheme. When a node

desires to send data an RTS may be sent to alert other

nodes on the channel that a transmission is about to

begin and the period of time during which they should

not transmit on that channel so as to avoid collisions.

If there are no conflicting uses of the channel, the tar-

get node will respond with a CTS to acknowledge the

request and give the transmitting node permission to

solely communicate on the medium.

As for previous location and tracking attacks, some

researchers have used RTS/CTS messages to perform

Time of Arrival computations [17] while others have

extended these techniques to perform Time Difference

of Arrival calculations from timestamps in exchanged

frames [11]. These older methods perform localization

on Access Points from client devices. Musa and Eriks-

son [24] present a basic RTS injection attack in order

to elicit a response from a client device. The novelty

in our method is that we are sending RTS frames to

802.11 client devices while in a randomized state. We

can extract a CTS response message which we derive

the true global MAC address of that device, effectively

using RTS/CTS exchanges to perform derandomization

attacks.

The result of sending a RTS frame to the global

MAC address of a device performing randomization was

that the target device responded with a CTS frame. A

CTS frame, having no source MAC address, is confirmed

as a response to our attack based on the fact that it was

sent to the original, crafted source MAC address [24]. A

full device listing utilized for the control frame attack is

available in Appendix D.

If the global MAC address is known, that device can

be easily tracked just as if randomization were never

enabled. This might cause one to wonder why vendors

would go to such lengths to include MAC address ran-

domization in a device only to allow that same device

to divulge the protected information through an ad-

ministrative protocol. We assert that this phenomenon

is beyond the control of individual vendors. The fact

is that this behavior occurs across the board on ev-

ery device we have physically tested as shown in Ap-

pendix D. This leads us to believe that RTS/CTS re-

sponses are not a function of the OS, but of the underly-

ing IEEE 802.11 chipset. Manufacturers have configured

their chipset hardware with default RTS/CTS operation

which may not even be accessible to configure at the OS

level. If we are correct, this derandomization issue can

not be fixed with a simple patch or OS update. Suscep-

tible mobile devices will be unmasked by this method

for the lifetime of the device. Additionally, due to the

hardware level nature of this phenomenon, there will be

a significant delay in the market until mobile devices

resistant to this attack are produced, assuming manu-

facturers recognize this as a flaw and subsequently de-

sign a process truly capable of delivering MAC address

privacy.

There are multiple scenarios in which a motivated

attacker could use this method to violate the privacy of

an unsuspecting user. If the global MAC address for a

user is ever known, it can then be added to a database

for future tracking. This global MAC address can be

divulged using the techniques discussed in this paper,

but it can also be observed any time the user is legit-

imately using that global MAC address, such as when

connected to an AP at home or work. This single leak-

age of the true identifier will allow an attacker to send

an RTS frame containing that global MAC address in

the future to which that host will respond with a cor-

rect CTS when it is in range. Conceivably, an adversary

with a sufficiently large database and advanced trans-

A Study of MAC Address Randomization in Mobile Devices and When it Fails 379

mission capabilities could render randomization protec-

tions moot. Additional testing of the control frame at-

tack, while the target device had WiFi or Airplane-

modes, enabled or disabled respectively, revealed further

concerns. Namely, Android devices performing location-

service enabled functions wake the 802.11 radio. Our

RTS attack was thusly able to trigger a CTS response

from the target, circumventing even extreme privacy

countermeasures. Apple iOS devices failed to elicit CTS

responses when the device was in Airplane mode, WiFi

was disabled, or the WiFi radio was in a sleep state.

Lastly, we add improvements, using our Wireshark sig-

nature filters, to eliminate the constant barrage of trans-

mitted RTS frames. Our collection algorithm is pre-

loaded with the target of interest’s device signature,

where upon observing the signature in the target area

we launch the preconfigured MAC address. We test this

against our diverse test phones with 100% success.

6.7.1 Bluetooth Correlation

We offer an additional method to derive the global WiFi

MAC address for later use in a RTS attack. Wright and

Cache [29] claim that Apple iPhone devices, beginning

with the iPhone 3G, utilize a one-off scheme for the

allocation of the Bluetooth and WiFi MAC addresses,

where the MAC address is actually equal to the Blue-

tooth address, plus or minus one. Using a novel algo-

rithm to calculate the WiFi and Bluetooth MAC ad-

dress from iOS devices operating in hotspot mode, we

provide evidence countering this claim.

We identified that Apple iOS devices, operating in

hotspot mode, send beacon management frames con-

taining an Apple vendor specific IE. This Type 6 field

closely resembles the source MAC address of the de-

vice. As Wireshark does not process this field correctly

we built custom dissectors to create display filters for

the Apple vendor tag IE and associated data fields. We

first test on 29 Apple iOS lab devices, placing each in

hotspot mode and collecting the beacon frames. We re-

trieve the true Bluetooth and WiFi MAC addresses from

the device settings menu of the phone. We then parse

the beacon frames, outputting the source MAC address

and six byte Type 6 IE.

We observe that the Type 6 field exactly represents

the Bluetooth MAC address. The source MAC address

of the Beacon frame has the local bit set. However, the

first byte of the source MAC address is not a simple

offset of the global MAC address as seen in most P2P

operations. To resolve the actual global MAC address

we find that replacing the first byte of the source MAC

address with the first byte of the Type 6 (Bluetooth De-

rived) MAC address, we obtain the correct WiFi MAC

address of the device. This permutation is successfully

tested for all 29 test devices across the gamut of model

and iOS versions.

Interestingly, six of the 29 test devices did not show

a one-off MAC address allocation. As such, we seek to

identify the accuracy of the previous claim that iOS

devices use this one-off scheme by evaluating across our

entire corpus.

A total of 3,576 devices were identified in our

dataset containing the Type 6 field of which ∼95.4% uti-

lized a one-off addressing scheme. Interestingly, ∼88.2%

of those devices had a Bluetooth address that was one-

higher than the WiFi MAC address. Indicating that

even when the offset is used it is not uniformly imple-

mented. We are unsure as to why ∼4.6% of iOS devices

do not use the one-off policy. Regardless, in all cases

the OUI of the two interfaces are the same. Using the

mDNS model correlation analysis we observed no indi-

cation that offset scheme is correlated with the device

model.

7 Conclusions

We provide a detailed breakdown of the randomiza-

tion polices implemented, the associated device models,

and the identification methods thereof. This granularly

detailed decomposition allowed for fine-tuned improve-

ments to prior attempts at MAC address derandomiza-

tion as well as providing novel additions.

Our analysis illustrates that MAC address random-

ization policies are neither universally implemented nor

effective at eliminating privacy concerns. Table 7 depicts

the diversity of presented attacks, across the spectra

of randomization schemes and OSs, highlighted by the

RTS control frame attack targeting a widespread low-

level chipset vulnerability. Active attacks are, by defi-

nition, harder to execute without being noticed. Each

attack has its own set of necessary conditions, as de-

scribed above, but we have organized Table 7 roughly

in order of severity from left being the most severe to

right being the least severe.

We conclude that Android devices are susceptible

to the spectrum of passive and active derandomization

techniques. Samsung devices do not conduct random-

ization at all, failing to provide a modicum of identi-

fier obfuscation. Conversely, iOS devices, while broken

A Study of MAC Address Randomization in Mobile Devices and When it Fails 380

Table 7. Derandomization Technique Results

Attacks can be carried out by a passive adversary unless otherwise noted

Randomization Bin Global MAC Address UUID-E Reversal Auth/Assoc Hotspot 2.0 - Karma Attack RTS Attack

Probe Request Frames (Active) (Active)

DA:A1:19 with WPS
√ √ √ √ √

DA:A1:19 w/o WPS
√

×
√ √ √

92:68:C3 with WPS
√ √ √ √ √

Motorola (No local bit)
√

×
√ √ √

Apple iOS × ×
√ √ √

for some edge cases, require specific network interaction

and/or active attacks for defeating randomization im-

plementations.

To be truly effective, randomization should be uni-

versally adopted. A continued lack of adoption, allowing

for simpler identification, effectively reduces the prob-

lem set for an attacker. The more devices performing

randomization within a test set, the harder it will be to

diffuse each device’s associated traffic. This is particu-

larly true if we can continue to bin the various schemes,

further reducing the problem set.

We propose the following best practices for MAC

address randomization. Firstly, mandate a universal

randomization policy to be used across the spectra of

802.11 client devices. We have illustrated that when

vendors implement unique MAC address randomization

schemes it becomes easier to identify and track those de-

vices. A universal policy must include at minimum, rules

for randomized MAC address byte structure, 802.11 IE

usage, and sequence number behavior.

To reiterate, these best practices can only be truly

effective when enforced across the spectrum of devices.

Granular examples of such policy rules:

– Randomize across the entire address space, provid-

ing 2
46 bits of randomization.

– Use a random address for every probe request frame.

– Remove sequence numbers from probe requests or

set the sequence number to a fixed value for all

probe request frames.

– If sequence numbers are used, reset sequence num-

ber when transmitting authentication and associa-

tion frames.

– Never send probe requests using a global MAC ad-

dress.

– Enforce a policy requiring a minimal standard set of

vendor IEs. Move any lost functionality to the au-

thentication/association process, or upon network

establishment utilize discovery protocols.

– Specifically, the use of WPS attributes should be

removed except when performing P2P operations.

Prohibit unique vendor tags such as those intro-

duced by Apple iOS 10.

– Eliminate the use of directed probe requests for cel-

lular offloading AP discovery.

– Mandate that chipset firmware remove behavior

where RTS frames received while in State 1 elicit

a CTS response.

Acknowledgments

We thank Rob Beverly, Adam Aviv, and Dan Roche for

early feedback. Views and conclusions are those of the

authors and should not be interpreted as representing

the official policies or position of the U.S. government.

The author’s affiliation with The MITRE Corporation

is provided for identification purposes only, and is not

intended to convey or imply MITRE’s concurrence with,

or support for, the positions, opinions or viewpoints ex-

pressed by the author.

References

[1] Linux WPA supplicant (IEEE 802.1x, WPA, WPA2, RSN,

IEEE 802.11i). https://w1.fi/wpa_supplicant/.

[2] IDC: Smartphone vendor market share. http://www.idc.

com/promo/smartphone-market-share/vendor.

[3] Guidelines for Use Organizationally Unique Identifier (OUI)

and Company ID (CID). https://standards.ieee.org/develop/

regauth/tut/eui.pdf.

[4] WPA supplicant change log. https://w1.fi/cgit/hostap/

plain/wpa_supplicant/ChangeLog.

[5] China Deputizes Smart Phones to Spy on Beijing Residents’

Real-Time Location. https://www.eff.org/deeplinks/2011/

03/china-deputizes-smart-phones-spy-beijing-residents, Oct

2011.

[6] WiFiGate - How Mobile Carriers Expose Us to Wi-Fi At-

tacks. https://www.skycure.com/blog/wifigate-how-mobile-

carriers-expose-us-to-wi-fi-attacks/, Apr 2014.

[7] Danger Close: Fancy Bear Tracking of Ukrainian Field Ar-

tillery Units. https://www.crowdstrike.com/blog/danger-

A Study of MAC Address Randomization in Mobile Devices and When it Fails 381

close-fancy-bear-tracking-ukrainian-field-artillery-units/, Jan

2017.

[8] D. E. 3rd and J. Abley. IANA Considerations and IETF Pro-

tocol and Documentation Usage for IEEE 802 Parameters.

RFC 7042 (Best Current Practice), Oct. 2013.

[9] M. V. Barbera, A. Epasto, A. Mei, S. Kosta, V. C. Perta,

and J. Stefa. CRAWDAD dataset sapienza/probe-requests.

http://crawdad.org/sapienza/probe-requests/20130910,

Sept. 2013.

[10] J. Bard. Unpacking the Dirtbox: Confronting Cell Phone

Location Tracking with the Fourth Amendment. BCL Rev.,

57:731, 2016.

[11] Z. Cui and A. Agrawala. WiFi Localization Based on IEEE

802.11 RTS/CTS Mechanism. In Proceedings of the 12th

EAI International Conference on Mobile and Ubiquitous

Systems, pages 199–208. ICST, 2015.

[12] M. Cunche. I know your mac address: targeted tracking of

individual using wi-fi. Journal of Computer Virology and

Hacking Techniques, 2014.

[13] M. Cunche, M. A. Kaafar, and R. Boreli. Linking wireless

devices using information contained in Wi-Fi probe requests.

In Pervasive and Mobile Computing, vol. 11, pages 56–69,

2014.

[14] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, and D. Sicker.

Passive data link layer 802.11 wireless device driver finger-

printing.

[15] M. Gast. 802.11 Wireless Networks: The Definitive Guide.

O’Reilly, Beijing, Farnham, 2005. ISBN 0-596-10052-3.

[16] D. Gentry and A. Pennarun. Passive Taxonomy of

Wifi Clients using MLME Frame Contents. CoRR,

abs/1608.01725, 2016.

[17] C. Hoene and J. Willmann. Four-way TOA and software-

based trilateration of IEEE 802.11 devices. In 2008 IEEE

19th International Symposium on Personal, Indoor and Mo-

bile Radio Communications, pages 1–6, Sept 2008.

[18] IEEE. OUI Public Listing. http://standards.ieee.org/

develop/regauth/oui/oui.txt.

[19] D. Kerr. Russian police spy on people’s mobile data to catch

thieves. https://www.cnet.com/news/russian-police-spy-on-

peoples-mobile-data-to-catch-thieves/, Jul 2013.

[20] J. Martin, E. Rye, and R. Beverly. Decomposition of MAC

Address Structure for Granular Device Inference. In Proceed-

ings of the 32nd Annual Conference on Computer Security

Applications, pages 78–88. ACM, 2016.

[21] C. Matte, M. Cunche, F. Rousseau, and M. Vanhoef. De-

feating MAC Address Randomization Through Timing At-

tacks. In Proceedings of the 9th ACM Conference on Secu-

rity; Privacy in Wireless and Mobile Networks, WiSec ’16,

pages 15–20. ACM, 2016.

[22] C. Mims. If You Have a Smart Phone, Anyone Can Now

Track Your Every Move. https://www.technologyreview.

com/s/427687/if-you-have-a-smart-phone-anyone-can-now-

track-your-every-move/, Oct 2012.

[23] T. Mitchell. Smartphone ownership rates skyrocket in many

emerging economies, but digital divide remains. http://

www.pewglobal.org/2016/02/22/smartphone-ownership-

rates-skyrocket-in-many-emerging-economies-but-digital-

divide-remains/, Feb 2016.

[24] A. Musa and J. Eriksson. Tracking Unmodified Smartphones

Using Wi-Fi Monitors. In Proceedings of the 10th ACM

conference on embedded network sensor systems, pages

281–294. ACM, 2012.

[25] B. L. Owsley. Spies in the Skies: Dirtboxes and Airplane

Electronic Surveillance. Mich. L. Rev. First Impressions, 113:

75–75, 2015.

[26] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and

D. Wetherall. 802.11 User Fingerprinting. In Proceedings

of the 13th annual ACM international conference on Mobile

computing and networking, pages 99–110, 2007.

[27] M. Sarwar and T. R. Soomro. Impact of Smartphone’s on

Society. European journal of scientific research, 98(2):216–

226, 2013.

[28] M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and

F. Piessens. Why MAC Address Randomization is not

Enough: An Analysis of Wi-Fi Network Discovery Mecha-

nisms. In ACM AsiaCCS, 2016.

[29] J. Wright and J. Cache. Hacking Exposed Wireless: Wireless

Security Secrets & Solutions. McGraw-Hill Education Group,

3rd edition, 2015. ISBN 0071827633, 9780071827638.

A OS Randomization

Configuration

A.1 Android

In October 2014 the wpa_suppplicant.conf file, used by Android,

Linux, Windows, and OS X client stations [1] for configuration of

802.11 networking, was updated to add experimental support for

MAC address randomization in network scans. Full implemen-

tation support was added in March 2015 [4]. Listing 1 depicts

the added support for MAC address randomization. It is worth

noting that the configuration file provides two policies for using

a non-globally unique address while in an associated state. If the

variable mac_addr is set to 1 the device will use a randomized

MAC address for each unique network the device connects to. If

mac_addr is set to 2 the device will randomize the lower three

bytes of the MAC address prefixed with the original OUI where

the local bit has been set to 1.

The wpa_supplicant.conf file also addresses the randomiza-

tion policies available for disassociated devices conducting active

scanning. In this case, the variable preassoc_mac_addr can be

set similarly to the previously described address policies.

Listing 1. wpa_supplicant.conf

MAC address policy default

0 = use permanent MAC address

1 = use random MAC address for each ESS connection

2 = like 1, but maintain OUI (with local admin bit

set)

#

By default, permanent MAC address is used unless

policy is changed by

the per-network mac_addr parameter. Global mac_addr=1

can be used to

change this default behavior.

A Study of MAC Address Randomization in Mobile Devices and When it Fails 382

#mac_addr=0

Lifetime of random MAC address in seconds (default:

60)

#rand_addr_lifetime=60

MAC address policy for pre-association operations

(scanning, ANQP)

0 = use permanent MAC address

1 = use random MAC address

2 = like 1, but maintain OUI (with local admin bit

set)

#preassoc_mac_addr=0

Android introduced MAC address randomization for probe

requests with Android 6.0 (Marshmallow) and in an incremental

patch to 5.0 (Lollipop). With the release of Marshmallow, the

WifiStateMachine.java and WifiNative.java files were modified

to implement MAC address randomization for active scanning.

When the SupplicantStartedState function is called upon en-

abling WiFi, a call to the newly added setRandomMacOui func-

tion sets the first three bytes of the MAC address to the default

Google CID (DA:A1:19). If the config_wifi_random_mac_oui

variable has been redefined in the config.xml file, that prefix

will be used in place of the default Google CID. The XML con-

figuration file allows an Android smartphone manufacturer to

override the default Google CID with a prefix to be used as the

substitute for the OUI. Finally, the prefix is passed to another

function, setScanningMacOui located in the WifiNative.java file

which calls a corresponding function at a lower, native level. If

the device chipset is compatible to support randomization then

the prefix will be used during active scans.

We extracted the wpa_supplicant.conf, WifiStateMa-

chine.java, and WifiNative.java files from Android devices that

do and do not perform MAC address randomization. We found

that the wpa_supplicant file was never utilized to implement

randomization, as attempts to modify the randomization set-

tings of the file had no affect on any device. The Java files

also had the supporting functions for randomization included,

regardless if the device used them. Interestingly, with logging

enabled, the devices that did not conduct randomization sent

output to the logs indicating that the random MAC had been

set, where devices seen randomizing did not.

A.2 iOS

In late 2014, Apple introduced MAC address randomization with

the release of iOS 8.0. Apple iOS randomization settings are not

device-model customizable, unlike Android, which allows each

model to modify settings such as the CID. As of the current iOS

10.x version, Apple devices only use the locally assigned MAC

address while in a disassociated state. Since iOS is not open

source, we cannot determine the exact method or configuration

options that Apple uses on their devices to support randomiza-

tion. Instead, we are left to determine device behavior from a

“black box” perspective by observing communication from dif-

ferent devices and iOS versions in §5.

B iOS Randomization Tests

To determine if iOS is using random prefixes, or if there is just

a pattern that we have not been able to see, we used several

standard statistical tests to compare our observations with an

ideal, random distribution. First, we calculated the number of

collisions we observed, where the same prefix appeared more

than once. If they are truly random we would expect to see a

moderate number of collisions, which is easy to quantify. We

would also expect to see a certain, far fewer, number of triple

collisions where one prefix appears three times. These numbers

can be calculated as follows:

E[# of collisions] =

(

n

2

)

m

E[# of triple collisions] =

(

n

3

)

m2

where n = # of addresses observed

m = # of possible prefixes (222)

Comparing our empirical results with the statistical expec-

tations, we get:

For :

Collisions : expected = 266, observed = 262

Triple collisions : expected = 1, observed = 3

Additionally, we decomposed the bytes of subsequent MAC

addresses into a bit stream and ran the tests specified in the

FIPS 140-1 standard published by NIST to test random number

generators. We obtained the following results:

– Monobit test: 9939

– Poker test: 13.56

– Runs test length 1: 2515

– Runs test length 2: 1342

– Runs test length 3: 581

– Runs test length 4: 281

– Runs test length 5: 166

– Longest run test: 12

All tests passed within the allowable ranges. These tests indicate

to us that the MAC addresses are distributed uniformly.

A Study of MAC Address Randomization in Mobile Devices and When it Fails 383

C Google CID Device Breakdown

Table 8. DA:A1:19 with WPS Model Breakdown

Manufacturer Model Distinct Devices

Huawei Nexus 6P 1660

BlackBerry STV100-3 133

HTC Nexus 9 107

BlackBerry STV100-1 71

Sony E5823 61

Sony E6653 59

Sony SO-01H 29

Sony E6853 23

Blackberry STV100-4 20

Huawei NXT-L29 17

Sony SO-02H 17

Google Pixel C 12

Sony SO-03H 11

Sony SOV32 11

Huawei NXT-AL10 11

BlackBerry STV100-2 10

Sony SO-03G 9

Sony SOV31 8

Sony E6883 8

Sony E5803 8

Sony E6553 7

Huawei NXT-L09 6

Sony E6683 6

Huawei EVA-L09 5

Sony F5121 5

Sony E6533 4

Huawei EVA-AL00 3

Huawei KNT-AL20 2

Huawei EVA-AL10 2

Sony SGP712 2

Sony SGP771 2

Sony E6603 1

Sony E6633 1

Sony SO-05G 1

LGE LG-H811 1

Sony E6833 1

Huawei VIE-AL10 1

Huawei EVA-DL00 1

Sony 402SO 1

Google Pixel XL 1

Sony 501SO 1

Huawei EVA-L19 1

Sony F5321 1

HTC HTC 2PS650 1

D RTS Control Frame Attack -

Device Diversity

Table 9. RTS Control Frame Attack - Device Diversity

Model OS Version Success

iPhone 6s 10.1.1
√

iPhone 6s 9.3.5
√

iPhone 6s Plus 9.3.5
√

iPhone 5s 10.1
√

iPhone 5s 9.3.5
√

iPhone 5 9.3.5
√

iPad Air 9.3.5
√

Google Pixel XL 7.1
√

LGE Nexus 5X 7.0
√

LGE G5 6.0.1
√

LGE G4 6.0.1
√

Motorola Nexus 6 6.0.1
√

Moto E2 5.1.1
√

Moto Z Play 6.0.1
√

OnePlus 3 6.0.1
√

Xiaomi Mi Note Pro 5.1.1
√

	A Study of MAC Address Randomization in Mobile Devices and When it Fails
	1 Introduction
	2 Background
	2.1 MAC Addresses
	2.2 Mobile OS MAC Randomization

	3 Related Work
	4 Methodology
	4.1 Ethical Considerations
	4.2 Identifying Randomization

	5 Analysis
	5.1 Android Randomization
	5.1.1 92:68:C3
	5.1.2 DA:A1:19
	5.1.3 Motorola
	5.1.4 Samsung

	5.2 iOS Randomization
	5.3 Windows 10 and Linux Randomization

	6 MAC Randomization Flaws
	6.1 Adoption Rate
	6.2 Global Probe Request
	6.3 UUID-E Reversal
	6.4 Device Signature
	6.5 Association/Authentication Frames
	6.6 Karma Attack
	6.7 Control Frame Attack
	6.7.1 Bluetooth Correlation

	7 Conclusions
	A OS Randomization Configuration
	A.1 Android
	A.2 iOS

	B iOS Randomization Tests
	C Google CID Device Breakdown
	D RTS Control Frame Attack - Device Diversity

